Maximizing products of linear forms, and the permanent of positive semidefinite matrices

نویسندگان

چکیده

We study the convex relaxation of a polynomial optimization problem, maximizing product linear forms over complex sphere. show that this program is also permanent Hermitian positive semidefinite (HPSD) matrices. By analyzing constructive randomized rounding algorithm, we obtain an improved multiplicative approximation factor to HPSD matrices, as well computationally efficient certificates for approximation. propose analog van der Waerden's conjecture where problem interpreted permanent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Inequalities Involving Khatri-rao Products of Positive Semidefinite Hermitian Matrices

In this paper, we obtain some matrix inequalities in Löwner partial ordering for Khatri-Rao products of positive semidefinite Hermitian matrices. Furthermore, we generalize the Oppenheim’s inequality, with which we will improve some recent results.

متن کامل

Multilinear forms which are products of linear forms

The conditions under which, multilinear forms (the symmetric case and the non symmetric case),can be written as a product of linear forms, are considered. Also we generalize a result due to S.Kurepa for 2n-functionals in a group G.

متن کامل

Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices

We build upon the work of Fukuda et al. [SIAM J. Optim., 11 (2001), pp. 647–674] and Nakata et al. [Math. Program., 95 (2003), pp. 303–327], in which the theory of partial positive semidefinite matrices was applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improved an existing algorithm based on a standard ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2021

ISSN: ['0025-5610', '1436-4646']

DOI: https://doi.org/10.1007/s10107-021-01616-3